sys akw danych dodatek b, Automatyka i Robotyka, Semestr I, Fizyka, Semestr 2, Laboratoria, laborki na AiR, ...

[ Pobierz całość w formacie PDF ]
a
Low Cost, Low Power
Instrumentation Amplifier
AD620
CONNECTION DIAGRAM
8-Lead Plastic Mini-DIP (N), Cerdip (Q)
and SOIC (R) Packages
FEATURES
EASY TO USE
Gain Set with One External Resistor
(Gain Range 1 to 1000)
Wide Power Supply Range (
18 V)
Higher Performance than Three Op Amp IA Designs
Available in 8-Lead DIP and SOIC Packaging
Low Power, 1.3 mA max Supply Current
6
2.3 V to
6
1
8
R
G
+V
S
R
G
–IN
2
7
+IN
3
6
OUTPUT
EXCELLENT DC PERFORMANCE (“B GRADE”)
50
–V
S
4
AD620
5
REF
m
V max, Input Offset Voltage
0.6
C max, Input Offset Drift
1.0 nA max, Input Bias Current
100 dB min Common-Mode Rejection Ratio (G = 10)
m
V/
8
TOP VIEW
1000. Furthermore, the AD620 features 8-lead SOIC and DIP
packaging that is smaller than discrete designs, and offers lower
power (only 1.3 mA max supply current), making it a good fit
for battery powered, portable (or remote) applications.
The AD620, with its high accuracy of 40 ppm maximum
nonlinearity, low offset voltage of 50 mV max and offset drift of
0.6 mV/°C max, is ideal for use in precision data acquisition
systems, such as weigh scales and transducer interfaces. Fur-
thermore, the low noise, low input bias current, and low power
of the AD620 make it well suited for medical applications such
as ECG and noninvasive blood pressure monitors.
The low input bias current of 1.0 nA max is made possible with
the use of Superbeta processing in the input stage. The AD620
works well as a preamplifier due to its low input voltage noise of
9 nV/Ö
LOW NOISE
9 nV/
Ö
Hz, @ 1 kHz, Input Voltage Noise
0.28
m
V p-p Noise (0.1 Hz to 10 Hz)
EXCELLENT AC SPECIFICATIONS
120 kHz Bandwidth (G = 100)
15
m
s Settling Time to 0.01%
APPLICATIONS
Weigh Scales
ECG and Medical Instrumentation
Transducer Interface
Data Acquisition Systems
Industrial Process Controls
Battery Powered and Portable Equipment
Hz
at 1 kHz, 0.28 mV p-p in the 0.1 Hz to 10 Hz band,
0.1 pA/Ö
Hz
input current noise. Also, the AD620 is well suited
for multiplexed applications with its settling time of 15 ms to
0.01% and its cost is low enough to enable designs with one in-
amp per channel.
PRODUCT DESCRIPTION
The AD620 is a low cost, high accuracy instrumentation ampli-
fier that requires only one external resistor to set gains of 1 to
30,000
10,000
25,000
3 OP-AMP
IN-AMP
(3 OP-07s)
1,000
TYPICAL STANDARD
BIPOLAR INPUT
IN-AMP
20,000
100
15,000
G = 100
AD620A
10
10,000
R
G
AD620 SUPER
ETA
BIPOLAR INPUT
IN-AMP
b
1
5,000
0
0.1
0
5
10
15
20
1k
10k
100k
1M
10M
100M
SUPPLY CURRENT – mA
SOURCE RESISTANCE –
V
Figure 1. Three Op Amp IA Designs vs. AD620
Figure 2. Total Voltage Noise vs. Source Resistance
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
© Analog Devices, Inc., 1999
 AD620–SPECIFICATIONS
(Typical @ +25
8
C, V
S
=
6
15 V, and R
L
= 2 k
V
, unless otherwise noted)
AD620S
1
AD620A
AD620B
Model
Conditions
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Units
GAIN
G = 1 + (49.4 k/R
G
)
Gain Range
1
10,000
1
10,000
1
10,000
Gain Error
2
V
OUT
=
±
10 V
G = 1
0.03
0.10
0.01
0.02
0.03
0.10
%
G = 10
0.15
0.30
0.10
0.15
0.15
0.30
%
G = 100
0.15
0.30
0.10
0.15
0.15
0.30
%
G = 1000
0.40
0.70
0.35
0.50
0.40
0.70
%
Nonlinearity,
V
OUT
= –10 V to +10 V,
G = 1–1000
R
L
= 10 k
W
10
40
10
40
10
40
ppm
G = 1–100
R
L
= 2 k
W
10
95
10
95
10
95
ppm
Gain vs. Temperature
G =1
10
10
10
ppm/
°
C
Gain >1
2
–50
–50
–50
ppm/
°
C
VOLTAGE OFFSET
(Total RTI Error = V
OSI
+ V
OSO
/G)
Input Offset, V
OSI
V
S
=
±
5 V to
±
15 V
30
125
15
50
30
125
m
V
Over Temperature
V
S
=
±
5 V to
±
15 V
185
85
225
m
V
Average TC
V
S
=
±
5 V to
±
15 V
0.3
1.0
0.1
0.6
0.3
1.0
m
V/
°
C
Output Offset, V
OSO
V
S
=
±
15 V
400
1000
200
500
400
1000
m
V
V
S
=
±
5 V
1500
750
1500
m
V
Over Temperature
V
S
=
±
5 V to
±
15 V
2000
1000
2000
m
V
Average TC
V
S
=
±
5 V to
±
15 V
5.0
15
2.5
7.0
5.0
15
m
V/
°
C
Offset Referred to the
Input vs.
Supply (PSR)
V
S
=
±
2.3 V to
±
18 V
G = 1
80
100
80
100
80
100
dB
G = 10
95
120
100
120
95
120
dB
G = 100
110
140
120
140
110
140
dB
G = 1000
110
140
120
140
110
140
dB
INPUT CURRENT
Input Bias Current
0.5
2.0
0.5
1.0
0.5
2
nA
Over Temperature
2.5
1.5
4
nA
Average TC
3.0
3.0
8.0
pA/
°
C
Input Offset Current
0.3
1.0
0.3
0.5
0.3
1.0
nA
Over Temperature
1.5
0.75
2.0
nA
Average TC
1.5
1.5
8.0
pA/
°
C
INPUT
Input Impedance
Differential
10
i
2
10
i
2
10
i
2
G
W
i
pF
Common-Mode
10
i
2
10
i
2
10
i
2
G
W
i
pF
Input Voltage Range
3
V
S
=
±
2.3 V to
±
5 V
–V
S
+ 1.9
+V
S
– 1.2
–V
S
+ 1.9
+V
S
– 1.2
–V
S
+ 1.9
+V
S
– 1.2
V
Over Temperature
–V
S
+ 2.1
+V
S
– 1.3
–V
S
+ 2.1
+V
S
– 1.3
–V
S
+ 2.1
+V
S
– 1.3
V
V
S
=
±
5 V to
±
18 V
–V
S
+ 1.9
+V
S
– 1.4
–V
S
+ 1.9
+V
S
– 1.4
–V
S
+ 1.9
+V
S
– 1.4
V
Over Temperature
–V
S
+ 2.1
+V
S
– 1.4
–V
S
+ 2.1
+V
S
– 1.4
–V
S
+ 2.3
+V
S
– 1.4
V
Common-Mode Rejection
Ratio DC to 60 Hz with
I k
W
Source Imbalance
V
CM
= 0 V to
±
10 V
G = 1
73
90
80
90
73
90
dB
G = 10
93
110
100
110
93
110
dB
G = 100
110
130
120
130
110
130
dB
G = 1000
110
130
120
130
110
130
dB
OUTPUT
Output Swing
R
L
= 10 k
W
,
V
S
=
±
2.3 V to
±
5 V
–V
S
+ 1.1
+V
S
– 1.2
–V
S
+ 1.1
+V
S
– 1.2
–V
S
+ 1.1
+V
S
– 1.2
V
Over Temperature
–V
S
+ 1.4
+V
S
– 1.3
–V
S
+ 1.4
+V
S
– 1.3
–V
S
+ 1.6
+V
S
– 1.3
V
V
S
=
±
5 V to
±
18 V
–V
S
+ 1.2
+V
S
– 1.4
–V
S
+ 1.2
+V
S
– 1.4
–V
S
+ 1.2
+V
S
– 1.4
V
Over Temperature
–V
S
+ 1.6
+V
S
– 1.5
–V
S
+ 1.6
+V
S
– 1.5
–V
S
+ 2.3
+V
S
– 1.5
V
Short Current Circuit
±
18
±
18
±
18
mA
–2–
REV. E
 AD620
AD620S
1
AD620A
AD620B
Model
Conditions
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Units
DYNAMIC RESPONSE
Small Signal –3 dB Bandwidth
G = 1
1000
1000
1000
kHz
G = 10
800
800
800
kHz
G = 100
120
120
120
kHz
G = 1000
12
12
12
kHz
Slew Rate
0.75
1.2
0.75
1.2
0.75
1.2
V/
m
s
Settling Time to 0.01%
10 V Step
G = 1–100
15
15
15
m
s
G = 1000
150
150
150
m
s
NOISE
Voltage Noise, 1 kHz
Total RTI Noise
=
(
e
2
ni
)
+
(
e
no
/
G
)
2
Input, Voltage Noise, e
ni
9
13
9
13
9
13
n /
Ö
Hz
Output, Voltage Noise, e
no
72
100
72
100
72
100
nV/
Ö
Hz
RTI, 0.1 Hz to 10 Hz
G = 1
3.0
3.0
6.0
3.0
6.0
m
V p-p
G = 10
0.55
0.55
0.8
0.55
0.8
m
V p-p
G = 100–1000
0.28
0.28
0.4
0.28
0.4
m
V p-p
Current Noise
f = 1 kHz
100
100
100
fA/
Ö
Hz
0.1 Hz to 10 Hz
10
10
10
pA p-p
REFERENCE INPUT
R
IN
20
20
20
k
W
I
IN
V
IN+
, V
REF
= 0
+50
+60
+50
+60
+50
+60
m
A
Voltage Range
–V
S
+ 1.6
+V
S
– 1.6
–V
S
+ 1.6
+V
S
– 1.6
–V
S
+ 1.6
+V
S
– 1.6
V
Gain to Output
1
±
0.0001
1
±
0.0001
1
±
0.0001
POWER SUPPLY
Operating Range
4
±
2.3
±
18
±
2.3
±
18
±
2.3
±
18
V
Quiescent Current
V
S
=
±
2.3 V to
±
18 V
0.9
1.3
0.9
1.3
0.9
1.3
mA
Over Temperature
1.1
1.6
1.1
1.6
1.1
1.6
mA
TEMPERATURE RANGE
For Specified Performance
–40 to +85
–40 to +85
–55 to +125
°C
NOTES
1
See Analog Devices military data sheet for 883B tested specifications.
2
Does not include effects of external resistor R
G
.
3
One input grounded. G = 1.
4
This is defined as the same supply range which is used to specify PSR.
Specifications subject to change without notice.
REV. E
–3–
 AD620
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Internal Power Dissipation
2
. . . . . . . . . . . . . . . . . . . . . 650 mW
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ± V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . .± 25 V
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range (Q) . . . . . . . . . . –65°C to +150°C
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C
Operating Temperature Range
AD620 (A, B) . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
AD620 (S) . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C
Lead Temperature Range
(Soldering 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . +300°C
ORDERING GUIDE
Model
Temperature Ranges Package Options*
AD620AN
–40°C to +85°C
N-8
AD620BN
–40°C to +85°C
N-8
AD620AR
–40°C to +85°C
SO-8
AD620AR-REEL
–40°C to +85°C
13" REEL
AD620AR-REEL7
–40°C to +85°C
7" REEL
AD620BR
–40°C to +85°C
SO-8
AD620BR-REEL
–40°C to +85°C
13" REEL
AD620BR-REEL7
–40°C to +85°C
7" REEL
AD620ACHIPS
–40°C to +85°C
Die Form
AD620SQ/883B
–55°C to +125°C
Q-8
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
8-Lead Plastic Package:
*N = Plastic DIP; Q = Cerdip; SO = Small Outline.
q
JA
= 95
°
C/W
8-Lead Cerdip Package:
q
JA
= 110
°
C/W
8-Lead SOIC Package:
q
JA
= 155
°
C/W
METALIZATION PHOTOGRAPH
Dimensions shown in inches and (mm).
Contact factory for latest dimensions.
R
G
*
+V
S
OUTPUT
8
7
6
5
REFERENCE
8
0.0708
(1.799)
1
4
1
2
3
0.125
(3.180)
–V
S
R
G
*
–IN
*FOR CHIP APPLICATIONS: THE PADS 1R
G
AND 8R
G
MUST BE CONNECTED IN PARALLEL
TO THE EXTERNAL GAIN REGISTER R
G
. DO NOT CONNECT THEM IN SERIES TO R
G
. FOR
UNITY GAIN APPLICATIONS WHERE R
G
IS NOT REQUIRED, THE PADS 1R
G
MAY SIMPLY
BE BONDED TOGETHER, AS WELL AS THE PADS 8R
G
.
+IN
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD620 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
–4–
REV. E
 AD620
Typical Characteristics
(@ +25
8
C, V
S
=
6
15 V, R
L
= 2 k
V
, unless otherwise noted)
50
2.0
SAMPLE SIZE = 360
1.5
40
1.0
+I
B
–I
B
0.5
30
0
20
–0.5
–1.0
10
–1.5
0
–2.0
–80
–40
0
+40
+80
–75
–25
25
75
125
175
INPUT OFFSET VOLTAGE –
m
V
TEMPERATURE –
8
C
Figure 3. Typical Distribution of Input Offset Voltage
Figure 6. Input Bias Current vs. Temperature
50
2
SAMPLE SIZE = 850
40
1.5
30
1
20
0.5
10
0
0
–1200
–600
0
+600
+1200
0
1
2
3
4
5
INPUT BIAS CURRENT – pA
WARM-UP TIME – Minutes
Figure 4. Typical Distribution of Input Bias Current
Figure 7. Change in Input Offset Voltage vs.
Warm-Up Time
50
1000
SAMPLE SIZE = 850
40
GAIN = 1
100
30
GAIN = 10
20
10
10
GAIN = 100, 1,000
GAIN = 1000
BW LIMIT
0
1
–400
–200
0
+200
+400
1
10
100
1k
10k
100k
FREQUENCY – Hz
INPUT OFFSET CURRENT – pA
Figure 5. Typical Distribution of Input Offset Current
Figure 8. Voltage Noise Spectral Density vs. Frequency,
(G = 1–1000)
REV. E
–5–
  [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • kfc.htw.pl